Damped Conical Pendulum
Physics • Mechanics • 2025The Conical Pendulum with Air Resistance
Problem Statement
A conical pendulum of mass m and length L rotates with initial angular velocity ω₀. Air resistance provides a force F = -kv² opposite to the velocity direction. Find the rate at which the string angle θ decreases with time.
Given Data
- Mass of pendulum bob: m
- Length of string: L
- Initial angular velocity: ω₀
- Air resistance force: Fₐᵢᵣ = -kv²
- Gravitational acceleration: g
Concepts & Approach
We'll use:
- Newton's Laws in radial and vertical directions
- Energy considerations for the damping effect
- Differential equations to describe the motion
Step-by-Step Solution
Step 1: Forces in the Conical Pendulum
For a conical pendulum without air resistance:
- Tension T along the string
- Gravity mg downward
- Centripetal force required for circular motion
The geometry gives:
Radius of circle: $$ r = L\sin\theta $$
Height: $$ h = L\cos\theta $$
Step 2: Force Balance Equations
Vertical direction:
$$ T\cos\theta = mg $$
Radial direction (without drag):
$$ T\sin\theta = m\omega^2 r = m\omega^2 L\sin\theta $$
From these, we get the standard conical pendulum relation:
$$ \omega^2 = \frac{g}{L\cos\theta} $$
Step 3: Including Air Resistance
With air resistance F = -kv² opposing velocity, the tangential velocity decreases over time.
The velocity magnitude is:
$$ v = \omega r = \omega L\sin\theta $$
The tangential force equation becomes:
$$ m\frac{dv}{dt} = -kv^2 $$
Substituting v = ωLsinθ:
$$ mL\sin\theta \frac{d\omega}{dt} = -k(\omega L\sin\theta)^2 $$
Step 4: Relating ω and θ
From the force balance, we have:
$$ \omega^2 = \frac{g}{L\cos\theta} $$
Differentiating with respect to time:
$$ 2\omega \frac{d\omega}{dt} = \frac{g}{L} \cdot \frac{\sin\theta}{\cos^2\theta} \frac{d\theta}{dt} $$
Step 5: Solving the System
From Step 3:
$$ \frac{d\omega}{dt} = -\frac{kL\sin\theta}{m} \omega^2 $$
Substitute into the differentiated relation:
$$ 2\omega \left(-\frac{kL\sin\theta}{m} \omega^2\right) = \frac{g}{L} \cdot \frac{\sin\theta}{\cos^2\theta} \frac{d\theta}{dt} $$
Simplify:
$$ -\frac{2kL\sin\theta}{m} \omega^3 = \frac{g}{L} \cdot \frac{\sin\theta}{\cos^2\theta} \frac{d\theta}{dt} $$
Cancel sinθ (for θ ≠ 0):
$$ -\frac{2kL}{m} \omega^3 = \frac{g}{L\cos^2\theta} \frac{d\theta}{dt} $$
Step 6: Expressing in Terms of θ Only
Substitute $$ \omega^2 = \frac{g}{L\cos\theta} $$, so $$ \omega^3 = \left(\frac{g}{L\cos\theta}\right)^{3/2} $$
Then:
$$ -\frac{2kL}{m} \left(\frac{g}{L\cos\theta}\right)^{3/2} = \frac{g}{L\cos^2\theta} \frac{d\theta}{dt} $$
Step 7: Final Differential Equation
Solving for dθ/dt:
$$ \frac{d\theta}{dt} = -\frac{2kL}{m} \left(\frac{g}{L\cos\theta}\right)^{3/2} \cdot \frac{L\cos^2\theta}{g} $$
Simplify:
$$ \frac{d\theta}{dt} = -\frac{2k}{m} \sqrt{\frac{g}{L}} \cdot \frac{L\cos^2\theta}{\sqrt{\cos\theta}} $$
Final form:
$$ \frac{d\theta}{dt} = -\frac{2kL}{m} \sqrt{\frac{g}{L}} \cos^{3/2}\theta $$
Final Answer
The rate at which the string angle decreases is:
$$ \boxed{\frac{d\theta}{dt} = -\frac{2kL}{m} \sqrt{\frac{g}{L}} \cos^{3/2}\theta} $$
Physical Interpretation
- Negative sign confirms that θ decreases over time (pendulum slows down and settles)
- Strong dependence on θ: The rate of change is proportional to $\cos^{3/2}\theta$
- Parameters effect:
- Larger drag coefficient k → faster decay
- Longer string L → faster angular change
- Larger mass m → slower response to drag
This problem beautifully shows how dissipative forces transform a steady circular motion into a decaying oscillation, ultimately reaching the stable hanging position.
Tags: #Physics #NewtonLaws #ConicalPendulum #DifferentialEquations #AirResistance #ClassicalMechanics